Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Diagn Microbiol Infect Dis ; 101(3): 115488, 2021 Nov.
Article En | MEDLINE | ID: mdl-34461499

A common strategy in antifungal susceptibility testing is the utilization of the standardized protocol based on the microbroth dilution assay approach as described by the Clinical Laboratory Standards Institute (CLSI) (M27-A4). One major problem for laboratories in resource-limited countries with this protocol arises from the use of expensive culture media like RPMI-1640 and 3-N-morpholinopropanesulfonic acid (MOPS) buffer. One approach of circumventing this problem in cases of economic need is the evaluation of alternative culture media and buffers. The overall goal of this work was to investigate the influence of modifications in the protocol M27-A4 on diagnostic reliability. We performed univariate analyses evaluating (1) 2 different culture media (YNB and modified SAB); (2) three different buffers (sodium bicarbonate, Tris-HCL, and phosphate), as well as the influence of inoculum concentration (102, 103, 104, 105 cells/mL), the influence of incubation time, and the influence of the assessment mode (visual, biological dye, and spectrophotometer). Our results suggested that (1) RPMI-1640 may be substituted by modified SAB and (2) MOPS buffer may be substituted by Tris-HCl buffer for defined analyses. By comparing the CLSI protocol and the alternative protocol proposed in the present study (modified SAB and Tris-HCl buffer) for the assessment of fluconazole susceptibility of eighteen yeasts (clinical isolates), similar results with both methodologies were recorded. We feel that this study should stimulate a discussion on the feasibility and evolution of the M27-A4 protocol in order to include pragmatic alternatives for resource-limited settings.


Antifungal Agents/pharmacology , Culture Media/chemistry , Fungi/drug effects , Microbial Sensitivity Tests/standards , Buffers , Clinical Laboratory Services , Fungi/classification , Humans , Laboratories, Clinical/standards , Microbial Sensitivity Tests/methods , Reproducibility of Results
2.
Braz J Microbiol ; 51(4): 1791-1800, 2020 Dec.
Article En | MEDLINE | ID: mdl-32757139

Due to the increasing numbers of fungal infections and the emergence of drug-resistant fungi, optimization and standardization of diagnostic methods for the measurement of antifungal susceptibility are ongoing. The M27-A4 document by the US Clinical and Laboratory Standards Institute (CLSI) is presently used for the interpretation of minimum inhibitory concentrations of major opportunistic yeast species as measured by broth microdilution testing in many countries. Although microdilution is considered a benchmark for reproducible and accurate results, increased testing capacity, and limited human bias, the method is often inaccessible to routine clinical laboratories and researchers, especially in low-income countries. Furthermore, several studies suggest that there are still a considerable number of factors that make the estimation of in vitro activity of antifungal agents challenging. This review article summarizes the limitations of the M27-A4 standard which, despite the advances and improvements obtained by the standardization of antimicrobial resistance testing methods by CLSI, still persist.


Antifungal Agents/pharmacology , Laboratories/standards , Microbial Sensitivity Tests/standards , Fungi/drug effects , Fungi/growth & development , Humans , Laboratories/organization & administration , Microbial Sensitivity Tests/methods , Reference Standards
...